Perspective and multi-sectoral effects

Karl Claxton, Centre for Health Economics, University of York. www.york.ac.uk/inst/che

All effects of social value should count

- Costs and benefits fall on different sectors
- Budget set by a socially legitimate higher authority
- No consensus on how trade off
 - Health, consumption and other social arguments
 - No complete, legitimate and explicit SWF
- Even if willing to impose a SWF
 - Non marginal effects
 - Displaced wider effects
 - Dynamic effects
 - Social consensus and other social objectives
- Multi sector effects and compensation tests

Conceptual framework

- Two sectors
 - Budget constrained Health system
 - Rest of the economy
- Impacts on the health care system
 - Health gained Δh Costs falling on the health care system Δc_h Health forgone $\frac{\Delta c_h}{k}$
- Wider impacts
 - Costs falling on patients carers
 - External effects on the wider economy
 - Net consumption costs/benefits
- Social values
 - k = Cost effectiveness threshold (how much health give up within HCS)
 - v = How much (individual) consumption willing to give up to improve their health

k Δc_c^c Δc_c^e $\Delta c_c = \Delta c_c^c + \Delta c_c^e$

Questions of fact and questions of value?

When costs displace health (Δc_h) • $\frac{\Delta c_h}{k}$ ≥ 0 $v.\Delta h - \frac{v}{k}\Delta c_h \geq 0$, or $\frac{\Delta c_h}{\Delta h} \leq k$ Δh Health Health gained forgone When costs displace consumption (Δc_c) • $\frac{\Delta c_c}{2} > 0$ $v.\Delta h - \Delta c_c \ge 0$, or $\frac{\Delta c_c}{\Delta h} \le v$ Δh V Consumption forgone Costs fall on both • $v.\Delta h - \frac{\sum_{v=1}^{k} \Delta c_{c}}{k} \Delta c_{c} \ge \emptyset, \quad or$ $\Delta h = -\frac{\Delta c_h}{k} = -\frac{\Delta c_c}{v} \ge 0$

Fact : k = how much health displaced by increased HCS costs?*Value: v* = how much consumption should we give up for health?

Effects outside health - spectrum of policies

Possible Policy	Net health benefit	ICER
A. Ignore effects (NICE 2008)	$\Delta h - \frac{\Delta c_h}{k} > 0$	$\frac{\Delta c_h}{\Delta h} < k$

Biases of policies (marginal changes)

	A. Ignore wider costs		B. Costs on budget		C. Ignore constraint		
Type of Technology	Bias	Decision	Bias	Decision	Bias	Decision	
Mana affaating							
Positive costs (NHS)	+	FP	_	FN	+	FP	
Cost saving (NHS)	+	FP	-	FN	_	FN	
Net consumption benefits							
Positive costs (NHS)	-	FN	+	FP	+	FP	
Cost saving (NHS)	-	D	+	D	-	D	
Less effective							
Net consumption costs							
Positive costs (NHS)	+	D	-	D	+	D	
Cost saving (NHS)	+	FP	-	FN	-	FN	
Net consumption benefits							
Positive costs (NHS)	-	FN	+	FP	+	FP	
Cost saving (NHS)	-	FN	+	FP	-	FN	

- Bias in different directions depending on context
- Incentive for technologies to have positive health care costs
 - Positive bias due to non marginal change
 - Policy D may no longer be the best (A when benefits, B when costs)

Implications for policy

- Questions of value
 - Formal prescription
 - Requires specification of a complete SWF
 - v is the measure of social welfare and presupposes a complete SWF
 - k is simply an inefficient nuisance preventing welfare maximisation
 - Deliberative approach
 - Trade-offs still need to be made
 - k is an expression of social value of collective health care
 - v is how much of their consumption individuals are willing to give up to improve their own health
 - So good reasons why $k \neq v$

Implications for policy

- Questions of fact
 - Cost-effectiveness threshold
 - Is a change non marginal?
 - Impact relative to budget (single and a series of decisions)
 - How does k change with budget impact?
 - Consumption value of health
 - Requires social and scientific value judgements
 - Net consumption benefits
 - Cost of care not borne by NHS
 - Effects on wider economy (external to patient and carers)
 - QALYs include consumption effects?
 - Measurement and valuation requires social and scientific value judgements

Other critical considerations

- Displaced external effects
 - Compare to external benefits forgone
 - Danger of doubly false positive decisions
 - Improved heath on average offers benefits to the wider economy
 - On average a HCS perspective is sufficient!
 - Is a proper assessment of exceptions possible?
- Dynamic effects
 - Price to appropriate any net consumption benefits
 - External benefits become internal costs
 - Investment Incentives (technologies, disease and populations)
 - Impact relative to budget (single and a series of decisions)
 - Spend less of on health care more on payment of rent (reduce health)
- Social consensus
 - Potential conflict and long run credibility
 - Static and dynamic conflicts with social policies and NHS principles

Benefits and costs on multiple sectors?

- Multiple sectors
 - Health (H) and Education (E)
 - choose proportion (x) of population i that receives intervention j within programme k
 - Each jk impact on outcomes and costs in each sector
- Need a SWF
 - Arguments H and E
 - Weights
- Welfarist CBA
 - Compensation (WTP)
 - Not shadow price costs
- Problems for CEA and CBA
 - Full information
 - Estimates of respective thresholds

$$\max_{\Psi} \left(\sum_{k=1}^{K} \sum_{j=1}^{J_k} \sum_{i=1}^{I_k} (H_{ijk} + \delta \cdot E_{ijk}) x_{ijk} \right)$$

$$\Psi = \left(x_{ijk}, i = 1 \dots I_k, j = 1 \dots J_k, k = 1 \dots K \right)$$

or

$$\max_{\Psi} \left(\sum_{k=1}^{K} \sum_{j=1}^{J_k} \sum_{i=1}^{I_k} (B_{ijk}^H + B_{ijk}^E) x_{ijk} \right)$$
$$\Psi = \left(x_{ijk}, i = 1 \dots I_k, j = 1 \dots J_k, k = 1 \dots K \right)$$

sto

$$\sum_{k=1}^{K} \sum_{j=1}^{J_{k}} \sum_{i=1}^{I_{k}} c_{ijk}^{H} x_{ijk} \leq C_{H}$$

$$\sum_{k=1}^{K} \sum_{j=1}^{J_{k}} \sum_{i=1}^{I_{k}} c_{ijk}^{E} x_{ijk} \leq C_{E}$$

$$0 \leq x_{ijk} \leq 1 \qquad i = 1...I_{k}, j = 1...J_{k}, k = 1...K$$

$$\sum_{j=1}^{J_{k}} x_{ijk} = 1 \qquad i = 1...I_{k}, k = 1...K$$

What can we know?

- How much does it cost to produce health or education outputs
 - Estimate the shadow prices, i.e., sector specific thresholds
- Specify a complete SWF?
 - Value health and education output in terms of consumption
 - Account for the constraints in project selection
- Complete and legitimate SWF not possible?
 - Allocation of resource though legitimate social process reveals something about a latent welfare function
 - Interpret shadow prices as revealed but partial expression of social value
- Common numeraire(s)
 - Sector specific output
 - Sector specific resources
 - Private consumption (individual preferences)

A multi sectoral perspective

Sector	Net benefit	Outputs	Resources	Consumption
Health	ΔNB_{H}	ΔH - ΔC_H /k _H	$\Delta H.k_{H}$ ΔC_{H}	$v_{H}(\Delta H - \Delta C_{H} / k_{H})$
Education	ΔNB_E	ΔE - $\Delta C_E / k_E$	$\Delta E.k_{E}.$ - ΔC_{E}	$v_{E}(\Delta E - \Delta C_{E} / k_{E})$

	Health	Education		Decision	Compensation
1	ΔNB_{H} >0	ΔNB_{E} >0	$\Delta NB_{H} + \Delta NB_{E} > 0$	Accept	Non required
2 <	$\Delta NB_{H} > 0$	$\Delta NB_{E} < 0$	Jamie's so	chool dinners	0 - ΔNB_E from H to E
3 <	∆NB _H <0	$\Delta NB_{E} > 0$	Ritalin f	or ADHD	0 - ΔNB_H from E to H
4	$\Delta NB_{H} < 0$	$\Delta NB_{E} < 0$	$\Delta NB_{H} + \Delta NB_{E} < 0$	Reject	Non possible
5	ΔNB_{H} >0	ΔNB_{E} <0			H cant compensate E
6	$\Delta NB_{H} < 0$	ΔNB_{E} >0			E cant compensate H

- Sector specific effects at values implied by resource allocation
- Pay compensation for each project?
- Some accounting to inform next round of public expenditure decisions